Width optimization of the Gaussian kernels in Radial Basis Function Networks

نویسندگان

  • Nabil Benoudjit
  • Cédric Archambeau
  • Amaury Lendasse
  • John Aldo Lee
  • Michel Verleysen
چکیده

Radial basis function networks are usually trained according to a three-stage procedure. In the literature, many papers are devoted to the estimation of the position of Gaussian kernels, as well as the computation of the weights. Meanwhile, very few focus on the estimation of the kernel widths. In this paper, first, we develop a heuristic to optimize the widths in order to improve the generalization process. Subsequently, we validate our approach on several theoretical and real-life approximation problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Width optimization of Gaussian function by genetic algorithm in RBF networks

Conventionally, in radial basis function (RBF) network width factor is constructed by obtaining r-nearest neighbor rule or taking equal to a constant for all Gaussian functions. This paper proposes an approach for the construction of width factor using genetic algorithm to optimize the Gaussian function. Our experimental results show that our proposed optimal-based width outperforms the convent...

متن کامل

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

Improving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm

Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...

متن کامل

Environmental Interference Cancellation of Speech with the Radial Basis Function Networks: An Experimental Comparison

In this paper, we use Radial Basis Function Networks (RBFN) for solving the problem of environmental interference cancellation of speech signal. We show that the Second Order ThinPlate Spline (SOTPS) kernel cancels the interferences effectively. For make comparison, we test our experiments on two conventional most used RBFN kernels: the Gaussian and First order TPS (FOTPS) basis functions. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002